Why make the particles bigger?

- decrease compressibility, improve flowability
- fix homogeneity
- improve particle shape
- improve tablet compression compatibility
Increasing particle size

- Wet-granulation (in high-shear mixers)
 - High-shear (mixer) wet granulation
- Fluidized-bed granulation
- Compaction (dry granulation)

- (Extrudation)
- (Tablet compression)
- (Spheronisation)

Interparticle forces

- Van der Waals
 - Attractive forces between molecules $E \sim 0.1$ eV
- Adsorbed liquid films interaction
 - Van der Waals interactions between liquid film condensing on particle surfaces
- Liquid bridges
 - Surface forces
 - Capillary forces
Cohesive forces in granules

- **Electrostatic forces**
 - Caused by electron transfer between surfaces

- **Solid bridges**
 - **Crystal bridges**
 - formed by wetting, partial dissolution and recrystallization of original particles
 - **Binder bridges**
 - formed by evaporating the solvent from binder solution

Granulation

- **Granulated product advantages**
 - no dust particles
 - good flowability
 - stable bulk density
 - better compressibility (porous)
 - good solubility
 - higher bulk density
Wet granulation: principle

Spraying → Wetting → Consolidation → Agglomeration

binding agent

Mechanical mixing

Granule growth
Phases of wet granulation

- Pre-homogenizing
 - dry premixing powders
- Spraying
 - spraying powder by binder solution
 - spraying powder – binder mixture by wetting agent
- Granulation
 - formation and growth of granules by intensive high-shear mixing
- Drying

Binding agents, Granulating agents

- Starch (5 – 25 %)
 - Traditional, difficult for process control
- Pre-gelatinized starch (0,1 – 0,5 %)
 - soluble in cold water
 - possible mixing into dry powder
- Other natural binders
 - acacia gum, alginic acid, alginates
 - gelatin
 - saccharides
Binding agents, Granulating agents

- **Synthetic binders**
 - Polyvinylpyrrolidone (PVP, 2 – 8 %)
 - Hygroscopic, high polymer degree = dissolution problems
 - Methylcelulose (MC, 1 – 5 %)
 - Swellable and soluble in cold water, similar to starch, higher strength
 - Hydroxypropylmethylcelulose (HPMC, 2 – 8 %)
 - Karboxymethylcelulose salts (CMC, 1 – 5 %)
 - Ethylcelulose (EC, 1 – 5 % in EtOH)
 - good disintegration, poor dissolution

Selecting binder agent

- **Powder and binder properties**
 - powder wettability and penetration
 - solvent
 - binder x substrate compatibility

- **Binder amount**
 - aids granulation, increased granule strength
 - can hydrophilize hydrophobic surface
 - worsens disintegration of tablets
 - slows down the dissolution
Mechanism of wet granulation

- Nucleation and binder distribution
- Consolidation and growth
 - Coalescence
 - Coating
 - Transfer
- Abrasion and fragmentation
 - Fragmentation
 - Abrasion

Wetting and nucleation

- Wetting and uniform distribution of liquid
 - effects the size and formation of granules
 - effects the granules uniformity
- Measuring liquid penetration
 - Washburn test (calculating penetrating rate from physical chemistry) experimentally difficult
 \[
 \frac{dz}{dt} = \frac{r_{\text{penet}} \cos \Theta}{4 \mu z}
 \]
 - Measuring penetration time \(t_p \) (simple)
 - time to soak single droplet of granulation liquid into the powder layer
Spraying

- Droplets fall on the powder surface
 - separately
 - overlapping

- The spraying efficiency governed by
 - dimensionless factor of spray flow
 - \(\psi = \frac{3Q}{2u_{\text{surface}} w_{\text{spray}} d_{\text{droplet}}} \)

Nucleation regimes
Ideal wetting conditions

- Droplet controlled nucleation regime
 - low spraying factor
 - droplet fall on the powder surface creating a new nucleum
 - sufficient penetration rate
 - droplet must soak into the powder until next droplet comes in

Amount of liquid and agglomerates

- a) pendular bridges
- b) funicular bridges
- c) capillary bridges
- d) droplet / suspension
Cohesive forces

Consolidation and growth

- mechanisms of granule growth
 - Coalescence
 - most important, fast
 - Coating
 - Transfer
High- and low-deformability systems

(A)

(B)

Engineering in Chemical and Pharmaceutical Processes
Particle Sizing - Agglomeration

Granule impact and coalescence

initial approach; coalescence of I. type.

Deformation, cores in contact.

Elastic deformation, springback.

Separating; coalescence of II. type or bounce.

Engineering in Chemical and Pharmaceutical Processes
Particle Sizing - Agglomeration
Engineering in Chemical and Pharmaceutical Processes

Particle Sizing - Agglomeration

Coalescence in non-deforming systems

- Kinetic energy of impact
 - u_c ... characteristic collision velocity

- Energy losses by friction in liquid film
 - Stokes viscosity force

- Energy losses
 - $F_{si} \approx \eta d_p u_c$

- Kinetic energy to losses ratio
 - Stokes number
 - $E_{si} \approx F_{si} d_p \approx \eta d_p u_c$
 - $St \approx \frac{\rho u_c d_p}{\eta}$

Coalescence in non-deforming systems

- Coalescence of I. type can occur if there is a liquid film on granule surface
- Stokes number determines the coalescence of II. type

- low value
 - impact energy dissipates in a surface liquid film
 - coalescence of II. type occurs

- critical value
 - $St \approx \frac{\rho u_c d_p}{\eta}$

- high value
 - too high impact energy to dissipate = bouncing
Coalescence regimes in non-deforming systems

- Distribuce $d_p \rightarrow$ distribuce St
- Režimy
 - nesetrvačný (nesetřivačný)
 - St je nízké pro malé i velké částice
 - téměř všechny srážky vedou ke koalescenci
 - necitlivý na malé změny viskozity, velikosti částic, rychlosti
 - setrvačný
 - St je pro některé částice podkritické a pro jiné nadkritické
 - pouze některé srážky vedou ke koalescenci
 - rychlost koalescence je citlivá na malé změny viskozity, velikosti částic, rychlosti
 - obalovací
 - St je pro polovinu částic nadkritické
 - koalescence je vyvážena rozpadem

\[St \approx \frac{\rho d_p u d_p}{\eta} \]

Deformability effects

Steady Growth Behaviour
- Granule Size vs. Granulation Time
- Increasing Liquid Content
- High Deformation System
 - rapid coalescence growth

Induction Behaviour
- Granule Size vs. Granulation Time
- Increasing Liquid Content
- Low Deformation System
 - slow consolidation
 - coalescence growth
 - surface wet
Deformation behavior of granules

- Given by ratio
 - acting impact forces $\sigma_{\text{impact}} \, [\text{Pa}]$

 \[\sigma_{\text{impact}} = \frac{1}{2} \rho_g u_c^2 \]
 - u_c ... characteristic collision velocity
 - granule strength $\sigma \, [\text{Pa}]$
- Stokes deformation number

 \[S_{\text{def}} = \frac{\rho_g u_c^2}{2Y_d} \]
 - Y_d ... dynamic strength of granules

Growth map

- “Dry” Free-Flowing Powder
- “Crumb”
- Slurry
- Nucleation Only
- Steady Growth
- Rapid Growth
- Induction

Maximum Pore Saturation,

\[s_{\text{max}} = w \rho_c (1 - \epsilon_{\text{min}}) \rho \epsilon_{\text{min}} \]
Wet granulation equipment

- High-shear wet granulation
 - common granulation in mixers
 - high energy, high shear, dense granules
- Low-shear wet granulation
 - similar to blenders
 - lower density granules, similar to fluidized bed
- Fluidized bed granulators
 - granulation in fluidized bed

High-shear wet granulators
Low-shear wet granulators

Fluidized bed granulators

- Batch fluidized bed granulators
 - top spraying
 - bottom spraying
Fluidized bed granulators

- Continuous fluidized bed granulators
 - top spraying
 - bottom spraying

Comparing granules by process

- High-shear
 - Compact
 - high density
 - low hygroscopicity
 - broad PSD

- Fluidized bed
 - Better solubility
 - low density
 - adjustable PSD
Engineering in Chemical and Pharmaceutical Processes

Particle Sizing - Agglomeration

Granulator

Process monitoring

- I Wetting
 - low liquid content
 - no agglomeration
- II formation of liquid bridges
- III – IV granule consolidation and growth
- V Too much liquid - suspension

![Diagram of Granulator with spraying nozzle, chopper, and impeller]

![Graph showing impeller power over time added liquid]
Liquid amount and agglomeration

Controlling the process

- **Setpoint**
 - optimal granules PSD
- **Avoid**
 - overgranulation
- **Measured variable**
 - impeller power
- **Conditions**
 - proper amount of liquid
Critical process parameters

- **Amount of liquid**
 - granulation rate, size and properties of granules
 - experimental setup
 - transfer to different material
 - π ... dimensionless amount of granulating liquid
 - V ... added liquid
 - V_M ... (moisture) max. amount of liquid not creating granules
 - V_S ... (saturation) amount of liquid to fill all interparticle gaps

\[
\pi = \frac{V - V_M}{V_S - V_M}
\]

- **Geometry**
- **Powder properties**
- **Liquid amount and spraying quality**
- **Impeller frequency**
 - decrease number of lumps (extremely large granules)
 - increasing mean granule size (s výjimkou hrudek)
 - eliminating fines
Impeller frequency effect

- Scale up (simplified)
 - impeller tip velocity is crucial for achieving similarity

\[S, N \]

\[\omega, \text{s}^{-1} \]

\[V \approx 10^2 \text{l} \]

\[V \approx 10^1 \text{l} \]

\[V \approx 10^0 \text{l} \]

Granulating process similarity

- Important variables and constants (7)
 - \(\Delta P \) ... net impeller power, \(W \), kg.m\(^2\).s\(^{-3}\)
 - \(D \) ... impeller diameter, m
 - \(N \) ... impeller rotating frequency, s\(^{-1}\)
 - \(h \) ... powder layer height, m
 - \(r \) ... bulk density, kg.m\(^{-3}\)
 - \(\eta \) ... dynamic viscosity of granulated material, Pa.s, kg.m\(^{-1}\).s\(^{-1}\)
 - \(g \) ... gravitational acceleration, m.s\(^{-2}\)

- Basic properties (3)
 - mass, length, time
Granulating process similarity

- **Buckingham theorem**
 - Similarity can be evaluated by $7 - 3 = 4$ dimensionless numbers
 - Newton’s power number

- Reynolds’ number
 - $N_r = \frac{\Delta P}{\rho N^L D^4}$

- Froude number
 - $Re = \frac{\rho N^L D^2}{\eta}$

- Geometric number
 - $Fr = \frac{DN^2}{g}$

 $$\frac{h}{D}$$