Blending

- **Definitions**
 - Operation aimed at processing two or more separate components, so as to achieve a situation, when each particle of any component is as close as possible to a particle of the other component

- **Objectives**
 - Achieve the mixture uniformity
 - uniformity of final products
 - Maximize the contact surface area of components
 - promote interfacial physical and chemical processes

Mixing is reversible process

Spontaneity of mixing

- **Positive**
 - proceeds spontaneously without external action
 - e.g. diffusive mixing of gases in a vessel

- **Negative**
 - segregation proceeds spontaneously, without external action the components will separate
 - e.g. suspension settling

- **Neutral**
 - nothing happens without external action
 - e.g. powder mixture

Types of mixtures

Real mixture

- **Random**
 - well flowing particulate solid

- **Ordered**
 - cohesive materials
 - interaction between components
Scale of scrutiny

- Homogeneous mixture = samples taken from the mixture have equal properties
- Homogeneity depends on the sample size
- all mixtures seem being uniform at sufficiently large sample size
- Scale of scrutiny
 - Minimum sample size to be used to achieve the variance of samples below desired limit

Practical homogeneity in pharmaceutical production

- Character of mixtures
 - probability of achieving ordered mixtures is small
 - most mixtures are random (especially for powder - powder) - random nature of mixtures
- Multi-component mixtures
 - API homogeneity is important
 - pseudo-binary approach to mixtures, API + excipients
- Scale of scrutiny
 - corresponds to the size of final dosage form

Statistics tutorial

- Random variable
 - variable, the value of which is given by the result of random event
 - throwing dice result
 - API content in sample of random mixture
- mean value of a random variable
 - sum of all possible results of random event multiplied by their probability
 - mean value of dice throw result
 \[E(X) = 1 \cdot \frac{1}{6} + 2 \cdot \frac{1}{6} + 3 \cdot \frac{1}{6} + 4 \cdot \frac{1}{6} + 5 \cdot \frac{1}{6} + 6 \cdot \frac{1}{6} = 3.5 \]

Mean value of a random variable

- mean value of API content in sample taken from a bulk mixture
 \[E(X) = \lim_{N \to \infty} \frac{1}{N} \sum_{i=1}^{N} x_i \]
 - number of random sampling results is almost infinite
- Selective mean value - arithmetic average
 - mean value of API content in taken sample, calculated from selection of finite number of carried out experiments
 \[\bar{X} = \frac{1}{N} \sum_{i=1}^{N} x_i \]

Standard error of a random variable

- measure of variability of random variable
 - random variable result will be within \(\pm \) standard deviation from average with approximately 2/3 probability
 - random variable result will be within \(\pm 2 \times \) standard deviation from average with very high probability
 \[s = \sqrt{\frac{1}{N-1} \sum_{i=1}^{N} (x_i - \bar{X})^2} \]

Selective standard error

- measure of random events variability
 - API content variability in taken samples
 \[s = \sqrt{\frac{1}{N-1} \sum_{i=1}^{N} (x_i - \bar{X})^2} \]

Relative (selective) standard error, RSD %

- measure of variability related to mean value
 - e.g. comparable for two drug potencies (2 mg and 4 mg of API content)
 \[RSD = \frac{s}{\bar{X}} \times 100 \% = \frac{1}{\bar{X}} \times \sqrt{\frac{1}{N-1} \sum_{i=1}^{N} (x_i - \bar{X})^2} \times 100 \% \]
Evaluating homogeneity

- **Relative selective standard error of taken samples**
 - simple
 - frequently used
 - not in 0 - 100 % range

- **Mixing index**
 - multiple definitions
 - 0 - 100 % range
 - σ_{MAX} ... completely segregated state
 - σ_{MIN} ... minimum achievable non-homogeneity

(analytical error)

Random mixture properties

- **Variability of taken samples**
 - Assumption of (pseudo) binary mixture of similar components
 - $w = \frac{1}{n}$

 - W_{MAX} ... single component content in mixture (API)
 - s ... standard error of API content
 - n ... number of particles in the sample

- Defines the number of particles needed in dosage form to achieve desired uniformity

Sampling

Mixing particulate solids

- **Mechanisms of mixing**
 - convection
 - movement of particle groups relative to other groups
 - macroscopic mixing,
 - dispersion
 - movement of individual particles among other particles
 - micro-mixing
 - shear
 - movement of powder layers
 - disruption of agglomerates

Convective and dispersion mixing
Mixing particulate solids

- Tumbling blenders
 - rotating vessels with elements
 - convection and diffusion
 - rotating frequency $5 \text{ – } 30 \text{ s}^{-1}$

- Convective blenders
 - static vessel equipped by convey
 - convection, shear
 - good for agglomerating mixtures
 - difficult cleaning

Mixing particulate solids

- Fluid mixers
 - Very fast mixing
 - Multiple operations in single unit
 - drying, granulation
 - suitable for free flowing and mildly cohesive materials.

Blender selection

- Idealized blender
 - 3D movement of particles (not agglomerates)
 - eliminating dead zones

- Real blender
 - trade-off between mixing quality and process compatibility

- Blender selection
 - eliminate inadequate types
 - select optimal blender by mixing efficiency, throughput, price

Selected factors influencing the blender choice

- Process requirements
 - Particle comminution during blending
 - Cleaning
 - Continuous / Batch
- Mixing / Segregation relationship
 - Better for convection, worse for dispersion
- Effect of particulate solid flowability

Process parameters of tumbling blenders

- Key parameters
 - rotating frequency $\ldots f [\text{s}^{-1}]$
 - filling ratio $\ldots \phi$ [%]
 - equipment size
- Critical rotating speed
 - causes centrifugal movement of particles $= \text{no mixing}$

$$f_c \approx \frac{1}{2\pi} \frac{g}{R}$$
Powder movement in blender

- **Powder movement regimes**
 - a. sliding
 - b. slumping (0 - 3 % \(f_c \))
 - c. rolling (3 - 30 % \(f_c \))
 - d. cascading (3 - 30 % \(f_c \))
 - e. cataracting (30 - 100 % \(f_c \))
 - f. centrifuging

- **Rolling and cascading motion**
 - Depends on the filling ratio
 - Mixing proceeds only in the active zone

Filling ratio

- **Filling ratio > 50 %**
 - non-mixed core may develop

Processes taking place in powder homogenization

- Mixing is reversible process

Mixing kinetics

\[
RSD = a + b e^{-\frac{t}{\tau}} + c
\]

\[
\frac{dRSD}{dt} = -k_1 RSD + k_2 (RSD_0 - RSD)
\]
Causes for segregation

- Differences in particle size
- Differences in morphology
- Differences in density
- Components ratio
- Cohesive interactions
 - moisture
 - static charge

Segregation mechanisms

- Trajectory
- Percolation
- Fluidization

Segregation mechanisms

- Sifting
- Fluidization

Wall segregation

- Flow of particulate solid near wall
- Adhesive discrimination between particles
- Some particles possess higher affinity to equipment wall

Segregation examples

- Segregation in different blenders
- Larger particles are heavier and are subjected to higher inertial forces
- Different angle of repose
Segregation examples

- Larger particles are heavier and fall into the "crater"
- Sifting - large particles cannot pass through the small ones, but the opposite is possible

Segregation examples

- Larger particles may trigger an avalanche
- Trajectory segregation in aerodynamic conditions

Segregation examples

- Fluidizing at silo filling
- Discharging segregated mixture by funnel flow