Engineering in Chemical and Pharmaceutical Processes

Tablet compression

Tablet press tooling

Steps in tablet compression

Tablet press

- Rotary
 - several dies

- Single-punch
 - one die
Powder compaction during compressing the tablets

Material properties
- Compressibility = ability to reduce volume
- Compactibility = ability to form strong compacts

Energy analysis of compaction
- Analysis of force required per displacement during compression and decompression
- Energy = force * length
- Energy = area under curve
 - E_p = plastic deformation
 - E_e = elastic deformation
 - E_f = rearrangement / friction

Compression phases
- Particle rearrangement
- Deformation on contact points
- Fragmentation
- Bonding
- Deformation of solid body
- Decompression
- Ejection

Particle rearrangements
- Low pressure - big volume reduction
- Particles changing orientation, move, fill void spaces, percolate
- Better flowability means less rearrangement

Deformation
- Deformation occurs under pressure
 - elastic
 - plastic
- Plastic deformation occurs at yield pressure
- Deformation develops increased contact area - therefore new bonds
Fragmentation

- Exceeding the material strength causes fragmentation of original particles
- Fragmentations enable further compression and develop new surface for bonding
- Fragmentation is typical for less plastic materials

Force balance in die

- Pressure developed by upper punch F_U; lower punch force F_L is different
- Axial profile of strength $F_L = F_U e^{-k\frac{H}{D}}$
 - k ... material constant
- Force balance $F_L + F_U = F_U$
 - F_U ... friction force
- Mean force provides better information than F_U

Compression equations

- Heckel equation
 \[
 \ln \left(\frac{1}{1 - \rho_p} \right) = kp + A \left(\rho_p - \rho_0 \right)
 \]
 - ρ_p = projected rel. density at zero pressure
- k ... yield pressure
- A ... initial plast. def.

Heckel plot

- Heckel equation fits only the linear section II

Compression equations

- Kawakita equations
 \[
 C = \frac{V_0 - V}{V_0} = \frac{ab}{1 + ab}
 \]
 - a = maximum compression
 - $b = \rho_0$ pressure required to reduce volume by 50 %
 - low value = more plastic deformation
Heckel-Kawakita analysis

- Heckel equation - linear relationship at high pressure
- Kawakita equation - linear relationship at lower pressure
- different meaning of p_y and p_k
 - p_y: onset of plastic deformation (time dependent)
 - p_k: measure of plastic deformation (time dependent)
- p_y and p_k differ at longer residence time
- common interpretation of Heckel and Kawakita parameters

Bonding

- Different mechanisms
 - Mechanic - mechanic interlocking of particles
 - Intermolecular theory - interactions between molecules at surface of particles (e.g., van der Waals)
 - Liquid film theory - high pressure at contact edges aids dissolution/metling
 - most insoluble materials have poor compactibility
 - dry powders are poorly compactable

Solid body deformation

- Further compression = densification, less porosity
- Different radial and axial stress
 - lateral stress ratio (Poisson ratio)

Decompression

- On decompression - elastic springback - develops stress in the tablet
- Tablet must withstand this stress
- Stress released by
 - plastic deformation of tablet
 - fragmentation of the tablet
- Effect of tablet press speed - decompression rate
 - rate determines residence time - rate of crystalization (liquid film theory) - crystal strength

Tablet ejection

- Tablet expands only axially while contained in the die
- Radial expansion after leaving die (2 - 10 %)
- Tablet may disintegrate
 - lamination
 - capping